CONCURSO PETROBRAS

TÉCNICO DE MANUTENÇÃO JÚNIOR - ELETRÔNICA

Documentação de Projeto e Ferramentas CAD

Questões Resolvidas

QUESTÕES RETIRADAS DE PROVAS DA BANCA CESGRANRIO

Produzido por Exatas Concursos

www.ExatasConcursos.com.br

Índice de Questões

Prova: Técnico de Manutenção Júnior - Eletrônica - Petrobras 2012

Q45 (pág. 2), Q46 (pág. 3), Q47 (pág. 4), Q48 (pág. 1), Q49 (pág. 5), Q57 (pág. 6), Q58 (pág. 32).

Prova: Técnico de Manutenção Júnior - Eletrônica - Petrobras 2011/2
Q54 (pág. 7), Q58 (pág. 8).

Prova: Técnico de Manutenção Júnior - Eletrônica - Petrobras 2011/1
Q45 (pág. 9), Q47 (pág. 10), Q50 (pág. 11), Q56 (pág. 12).

Prova: Técnico de Manutenção Júnior - Eletrônica - Petrobras 2010/2

Q1 (pág. 13), Q2 (pág. 15), Q3 (pág. 14), Q4 (pág. 18), Q5 (pág. 15), Q6 (pág. 17), Q7 (pág. 18), Q8 (pág. 19), Q9 (pág. 20), Q31 (pág. 21), Q32 (pág. 22), Q33 (pág. 24), Q34 (pág. 22).

Prova: Técnico de Manutenção Júnior - Eletrônica - Petrobras 2010/1

Q3 (pág. 25), Q4 (pág. 26), Q24 (pág. 27), Q25 (pág. 29), Q27 (pág. 30), Q28 (pág. 31), Q46 (pág. 27), Q47 (pág. 32), Q48 (pág. 34), Q49 (pág. 35), Q50 (pág. 37).

Prova: Técnico de Manutenção Júnior - Eletrônica - Petrobras 2008

Q31 (pág. 38), Q33 (pág. 39), Q34 (pág. 40), Q38 (pág. 41).

Prova: Técnico de Manutenção Júnior - Eletrônica - Petrobras 2005

Q60 (pág. 43), Q61 (pág. 44), Q62 (pág. 45).

Número total de questões resolvidas nesta apostila: 44

Questão 3

(Técnico de Manutenção Júnior - Eletrônica - Petrobras 2012)

De acordo com a Norma ANSI/ISA-5.1-1984(R1992), a simbologia de linhas, mostrada na figura, representa um

- (A) conjunto de dois sinais elétricos
- (B) conjunto com mais de um sinal elétrico
- (C) sinal pneumático
- (D) sinal indefinido
- (E) sinal hidráulico

Resolução:

A norma citada define, dentre outros, os seguintes tipos de linhas:

			NO
1	SUPRIMENTO OU IMPULSO	2	SINAL A SER DEFINIDO
3	SINAL PNEUMÁTICO	4	SINAL ELÉTRICO
5	SINAL HIDRÁULICO	6 X X X	TUBO CAPILAR
7	SINAL ELETROMAGNÉTICO OU SÔNICO (TRANSMISSÃO GUIADA)	8 ~~~	SINAL ELETROMAGNÉTICO OU SÔNICO (TRANSMISSÃO NÃO GUIADA)
9 —————	LIGAÇÃO CONFIGURADA INTERNAMENTE AO SISTEMA (LIGAÇÃO DE "SOFTWARE")	10	LIGAÇÃO MECÂNICA
11 — ※ ※ ※	SINAL BINÁRIO PNEUMÁTICO	12\-\-\- - 	SINAL BINÁRIO ELÉTRICO

Alternativa (C)

Questão 21

(Técnico de Manutenção Júnior - Eletrônica - Petrobras 2010/2)

Em um projeto de instrumentação, o documento utilizado para caracterizar um instrumento é o(a)

- (A) diagrama lógico.
- (B) diagrama de malhas.
- (C) fluxograma de engenharia.
- (D) folha de dados.
- (E) lista de instrumentos.

Resolução:

- (A) FALSA. O diagrama lógico deve mostrar a interação lógica entre as ações e os eventos que devem ocorrer de forma automática e controlada pelo sistema. Também devem aparecer as seqüências automáticas de parada, partida ou manobras operacionais específicas. As informações de uma mesma lógica devem estar contidas em uma mesma folha, facilitando a compreensão. O documento deve representar a lógica na sua forma mais simplificada. O diagrama lógico pode ser emitido na fase de projeto básico e complementado na fase de projeto executivo.
- (B) FALSA. Todos os instrumentos de uma malha (*loop*) devem ser mostrados na folha do diagrama de malhas, por exemplo: a válvula de controle, o controlador, os bornes, caixas de junção, cabos, origem e destino dos cabos. O diagrama de malhas deve proporcionar claramente o entendimento do funcionamento de cada malha no processo e as ligações físicas entre seus componentes. As malhas mais complexas podem ser descritas em diagramas de controle que são diagramas mais abstratos em que os detalhes de interligação são omitidos.
- (C) FALSA. Fluxograma de engenharia é um desenvolvimento do fluxograma de processo, executado pelas equipes de processo e de projeto mecânico, emitido na fase de projeto básico e complementado na fase de projeto executivo, a partir do qual será confeccionado todo o projeto de tubulações. Além dos elementos já existentes no fluxograma de processo, devem ser também detalhados toda a malha de controle e também equipamentos, máquinas, tubulações e acessórios de utilidades, com os devidos tags e capacidades. O P&ID é um exemplo de fluxograma de engenharia.
- (D) VERDADEIRA. As folhas de dados de processos para instrumentos tem a finalidade de registrar, de forma sistemática e ordenada, a transmissão de dados

necessários à execução do projeto entre as equipes de Engenharia de Processos e a de Instrumentação. É um documento contendo os dados operacionais de cada instrumento envolvido no projeto.

(E) FALSA. A lista de instrumentos deve conter todos os instrumentos da unidade, inclusive instrumentos fornecidos com os outros equipamentos. Os instrumentos devem ser listados por malha, em ordem alfabética e crescente. A lista de instrumentos deve ser elaborada no início do projeto e usada com ferramenta de controle de andamento do projeto, portanto deve ser revisada, após inclusão ou exclusão de instrumentos, emissão ou cancelamento de documentos, ou quando necessário.

Alternativa (D)

Questão 22

(Técnico de Manutenção Júnior - Eletrônica - Petrobras 2010/2)

Um desenhista técnico, operando o programa AutoCAD, ao digitar uma coordenada para marcação de um ponto, utilizou o símbolo @, que significa

- (A) a partir de.
- (B) ao longo de.
- (C) na direção de.
- (D) no paralelo de.
- (E) no sentido de.

Resolução:

O sistema de coordenadas em AutoCAD ajuda a especificar com exatidão as dimensões dos desenhos que estão sendo criados. A arroba (@), neste caso, é indicativo de coordenada relativa.

Coordenadas relativas são as coordenadas dos pontos em relação ao último ponto clicado. Para definir um ponto a partir das coordenadas relativas ao último clicado, durante a execução de um comando, basta digitar, na linha de comandos, o símbolo @ (arroba) seguido dos valores separados por vírgula. Este processo é utilizado quando conhecemos o deslocamento de um ponto em relação ao ponto anterior.

Alternativa (A)